Chapter eight

Static balancing

By

Laith Batarseh

Static balancing

Ilmbalance is inherited in any rotating machinery due to the un symmetry in the material or the shape of the machine DThe main problem of imbalance is the generation of unbalanced centrifugal forces rotates with the machine which produce shaking and vibration issue in the system.
DUnless the vibration is required, the unbalanced machine will suffer from excessive fatigue stresses.
-To eliminate unbalance, we perform a process called balancing
\square Balancing can be static or dynamic
-Static balance is sometimes called single plane balancing.
dynamic balance is sometimes called multi plane balancing.

Static balancing

\square In static balancing the main condition is: $\Sigma \mathrm{F}-\mathrm{ma}=0$
\square In dynamic balancing the main conditions are: $\sum \mathrm{F}=0$ and $\sum \mathrm{M}=0$.
\square static balance is applied when the inertia is distributed radialy rather than axially (i.e. has a large radius compared to the thickness). For example, single slim gear or pulley or fly wheel or single turbine blade disc can be balanced using static balancing.
\square When the ratio between the radius and the thickness become small. or when there are multi discs on the same shaft, dynamic balancing is applied

Static balancing

Procedures for static balancing

1. Represent the mass distribution as a concentrated point mass (m) located at the center of gravity of that mass (C.G).
2. Measure the distances between the concentrated masses (i.e. C.Gs) to the center of rotation. Call this distance R.
3. Assume angular velocity (ω).
4. Assume that there is a balance mass $\left(m_{b}\right)$ located from the center of rotation by R_{b}.
5. Apply the static balance condition : $\sum \mathrm{F}-\mathrm{ma}=0$

$$
\left.\begin{array}{c}
-m_{1} \vec{R}_{1} \omega^{2}-m_{2} \vec{R}_{2} \omega^{2}-\ldots-m_{n} \vec{R}_{n} \omega^{2}-m_{b} \vec{R}_{b} \omega^{2}=0 \\
\quad \Rightarrow-m_{1} \vec{R}_{1}-m_{2} \vec{R}_{2}-\ldots . m_{n} \vec{R}_{n}-m_{b} \vec{R}_{b}=0
\end{array}\right\}--E q .1
$$

Static balancing

Procedures for static balancing

6. Rearrange Eq.1: $\quad m_{b} \vec{R}_{b}=-\left(m_{1} \vec{R}_{1}+m_{2} \vec{R}_{2}+\ldots .+m_{n} \vec{R}_{n}\right)---E q .2$
7. Resolve E .2 to its rectangular components

$$
\left.\begin{array}{c}
m_{b} \vec{R}_{b, x}=-\left(m_{1} \vec{R}_{1, x}+m_{2} \vec{R}_{2, x}+\ldots .+m_{n, x} \vec{R}_{n, x}\right) \\
m_{b} \vec{R}_{b, y}=-\left(m_{1} \vec{R}_{1, y}+m_{2} \vec{R}_{2, y}+\ldots .+m_{n} \vec{R}_{n, y}\right)
\end{array}\right\}--E q .3
$$

8. Drive expressions for R_{b} and θ_{b} :

$$
\begin{gathered}
\theta_{b}=\tan ^{-1}\left[\frac{m_{b} \vec{R}_{b, y}}{m_{b} \vec{R}_{b, x}}\right]=\tan ^{-1}\left[\frac{-\left(m_{1} \vec{R}_{1, y}+m_{2} \vec{R}_{2, y}+\ldots .+m_{n} \vec{R}_{n, y}\right)}{-\left(m_{1} \vec{R}_{1, x}+m_{2} \vec{R}_{2, x}+\ldots .+m_{n, x} \vec{R}_{n, x}\right)}\right]---E q \cdot 4 \\
R_{b}=\sqrt{\left(\vec{R}_{b, x}\right)^{2}+\left(\vec{R}_{b, y}\right)^{2}} \Rightarrow m_{b} R_{b}=\sqrt{\left(m_{b} \vec{R}_{b, x}\right)^{2}+\left(m_{b} \vec{R}_{b, y}\right)^{2}}---E q .5
\end{gathered}
$$

Static balancing

Procedures for static balancing

As you can see, we can find the angle θ_{b} directly from Eq. 4 but to find the values of m_{b} and R_{b} we have single equation (5). So, the product of distance and mass m_{b} and R_{b} can be found and according to that you can design the balancing system

Static balancing

Example

Solution:

1 Resolve the position vectors into $x y$ components in the arbitrary coordinate system associated with the freeze-frame position of the linkage chosen for analysis.

$$
\begin{array}{lll}
R_{1}=1.135 @ \angle 113.4^{\circ} ; & R_{1_{x}}=-0.451, & R_{1_{y}}=1.042 \\
R_{2}=0.822 @ \angle 48.8^{\circ} ; & R_{2_{x}}=+0.541, & R_{2 y}=0.618
\end{array}
$$

2 Solve equations 12.2c.

$$
\begin{align*}
& m_{b} R_{b_{x}}=-m_{1} R_{1_{x}}-m_{2} R_{2_{x}}=-(1.2)(-0.451)-(1.8)(0.541)=-0.433 \tag{b}\\
& m_{b} R_{b_{y}}=-m_{1} R_{1_{y}}-m_{2} R_{2 y}=-(1.2)(1.042)-(1.8)(0.618)=-2.363
\end{align*}
$$

3 Solve equations 12.2 d and 12.2 e .

$$
\begin{gathered}
\theta_{b}=\arctan \frac{-2.363}{-0.433}=259.6^{\circ} \\
m_{b} R_{b}=\sqrt{(-0.433)^{2}+(-2.363)^{2}}=2.402 \mathrm{~kg}-\mathrm{m}
\end{gathered}
$$

(c)

Static balancing

Example

4 This mass-radius product of $2.402 \mathrm{~kg}-\mathrm{m}$ can be obtained with a variety of shapes appended to the assembly. Figure $12-1 \mathrm{c}$ shows a particular shape whose $C G$ is at a radius of $R_{b}=$ 0.806 m at the required angle of 259.6°. The mass required for this counterweight design is then:

$$
\begin{equation*}
m_{b}=\frac{2.402 \mathrm{~kg}-\mathrm{m}}{0.806 \mathrm{~m}}=2.980 \mathrm{~kg} \tag{d}
\end{equation*}
$$

at a chosen $C G$ radius of:

$$
\begin{equation*}
R_{b}=0.806 \mathrm{~m} \tag{e}
\end{equation*}
$$

